Respuesta :
You can rewrite the equation as:
[tex]x+4 + \frac2{x+2}[/tex]
For extremely high (or low) x, the 2/(x+2) term goes to 0, so what remains then is:
f(x) = x+4.
This is the function that describes the asymptote.
[tex]x+4 + \frac2{x+2}[/tex]
For extremely high (or low) x, the 2/(x+2) term goes to 0, so what remains then is:
f(x) = x+4.
This is the function that describes the asymptote.
Answer:
oblique asymptote at y=x+4
Step-by-step explanation:
To find out oblique asymptote we use long division
x + 4
--------------------------------
x+2 x^2+6x+10
x^2 + 2x
----------------------------------(subtract)
4x + 10
4x + 8
----------------------------------------(subtract)
2
oblique asymptote at y=x+4