What is the oblique asymptote of the function f(x) = the quantity of x squared plus 6 x plus 10, all over x plus 2 ? (1 point)?

Respuesta :

tonb
You can rewrite the equation as:

[tex]x+4 + \frac2{x+2}[/tex]

For extremely high (or low) x, the 2/(x+2) term goes to 0, so what remains then is:

f(x) = x+4.

This is the function that describes the asymptote.


Answer:

oblique asymptote at y=x+4

Step-by-step explanation:

To find out oblique asymptote we use long division

                           x    + 4

                      --------------------------------

    x+2              x^2+6x+10        

                        x^2 + 2x  

                       ----------------------------------(subtract)

                                4x  + 10

                                4x   + 8

                   ----------------------------------------(subtract)

                                         2

         oblique asymptote at y=x+4