Define
v = volume of a drop per second, cm³/s
The time taken to fill 200 cm³ is 1 hour.
Let V = 200 cm³, the filled volume.
Let t = 1 h = 3600 s, the time required to fill the volume.
Therefore,
[tex] \frac{200 \, cm^{3}}{v \, cm^{3}/s} = 3600 \, s \\ v = \frac{200}{3600} =0.0556 \, cm^{3}[/tex]
The average volume of a single drop is approximately 0.0556 cm³.
Answer: 0.0556 cm³