Answer-
P(C|Y) of the information in the table was found to be 0.5
Solution-
We know from the formula for conditional probability that,
[tex]P(B\mid A)=\frac{P(A \ and \ B)}{P(A)}[/tex]
Applying the same,
[tex]P(C\mid Y)=\frac{P(C \ and \ Y)}{P(Y)}[/tex]
Calculating the values,
[tex]Probability \ of \ an \ event =\frac{favorable \ outcomes}{possible \ outcomes}[/tex]
[tex]P(C)=\frac{40}{146}=\frac{20}{73} \ and \ P(Y)=\frac{30}{146}=\frac{15}{73}[/tex]
[tex]P(C \ and \ Y)=\frac{15}{146}[/tex]
[tex]\therefore P(C\mid Y)=\frac{\frac{15}{146}}{\frac{15}{73}} =\frac{73}{146} =0.5[/tex]