Respuesta :

Answer:

So, only option-c and option-d are same

Step-by-step explanation:

(a) From Graph:

Firstly, we will find function of the graph

Let's assume exponential function as

[tex]f(x)=a(b)^x[/tex]

we can select any two points and find 'a' and 'b'

[tex]f(0)=\frac{1}{2}[/tex]

At x=0 , y=1/2:

we can plug values

[tex]f(0)=a(b)^0[/tex]

[tex]\frac{1}{2}=a(b)^0[/tex]

[tex]a=\frac{1}{2}[/tex]

now, we can plug it back

and we get

[tex]f(x)=\frac{1}{2}(b)^x[/tex]

At x=-1 , y=2:

we can plug values

[tex]f(-1)=\frac{1}{2}(b)^{-1}[/tex]

[tex]2=\frac{1}{2}(b)^{-1}[/tex]

[tex]b=\frac{1}{4}[/tex]

now, we can plug it back

and we get

[tex]f(x)=\frac{1}{2}(\frac{1}{4})^x[/tex]

(b) From chart:

Firstly, we will find function of the graph

Let's assume exponential function as

[tex]f(x)=a(b)^x[/tex]

we can select any two points and find 'a' and 'b'

[tex]f(0)=\frac{1}{2}[/tex]

At x=0 , y=1/2:

we can plug values

[tex]f(0)=a(b)^0[/tex]

[tex]\frac{1}{2}=a(b)^0[/tex]

[tex]a=\frac{1}{2}[/tex]

now, we can plug it back

and we get

[tex]f(x)=\frac{1}{2}(b)^x[/tex]

At x=1 , y=1:

we can plug values

[tex]f(1)=\frac{1}{2}(b)^{1}[/tex]

[tex]1=\frac{1}{2}(b)^{1}[/tex]

[tex]b=2[/tex]

now, we can plug it back

and we get

[tex]f(x)=\frac{1}{2}(2)^x[/tex]


The answer is A..................