1. Let [tex]y_n [/tex] represent the balance after year n
2. So for example [tex]y_1[/tex] represents the balance after year 1, [tex]y_2[/tex] the balance after year 2 and so on
3. so :
[tex]y_1=400[/tex]
[tex]y_2=400*3[/tex]
[tex]y_3=400*3*3[/tex]
[tex]y_4=400*3*3*3[/tex]
so notice that the diference of year n and the number of 3's we multiply is 1
so [tex]y_n=400*3^{n-1}[/tex] is the formula which gives the balance after n years