Respuesta :

frika

Consider triangle ABC with vertices at points A(2,-4), B(4,-4) and C(4,-2).

1. The rotation [tex]R_{O, 90^{\circ}}(x, y)[/tex] acts with the rule:

[tex](x,y)\rightarrow (-y,x).[/tex]

Then:

  • [tex]A(2,-4)\rightarrow A'(4,2);[/tex]
  • [tex]B(4,-4)\rightarrow B'(4,4);[/tex]
  • [tex]C(4,-2)\rightarrow C'(2,4).[/tex]

2. The reflection across the y-axis has a rule:

[tex](x,y)\rightarrow (-x,y).[/tex]

So,

  • [tex]A'(4,2)\rightarrow A''(-4,2);[/tex]
  • [tex]B'(4,4)\rightarrow B''(-4,4);[/tex]
  • [tex]C'(2,4)\rightarrow C''(-2,4).[/tex]

Triangle A''B''C'' is exactly the same as tiangle from figure 1.

Answer: correct choice is 1.

The coordinate of triangle after the rotation and reflection is A"(-4,2), B"(-4,4) and C"(-2,4). Hence the triangle 1 shows the final image.

How to rotate and reflect the figure?

Rotation of an object is rotating it about a fixed point without changing its shape and size.

Reflecting of an object is flipping it across a line without changing its shape and size.

Given information-

The [tex]\Delta ABC[/tex] is given in the problem.

The rule ry-axis • RO, 90°(x, y) is applied to ΔABC.

The rotation will change the y axis with the above rule.

  • The coordinate of A is [tex](2,-4)[/tex] Thus change the coordinate of the A as,

        [tex]A'=A(-y,x)\\A'=(4,2)[/tex]

  • The coordinate of B is [tex](4,-4)[/tex] Thus change the coordinate of the B as,

        [tex]B'=B(-y,x)\\B'=(4,4)[/tex]

  • The coordinate of C is [tex](4,-2)[/tex] Thus change the coordinate of the C as,

        [tex]C'=C(-y,x)\\C'=(2,4)[/tex]

The reflection across the y-axis with the above rule.

  • The coordinate of A' is [tex](4,2)[/tex] Thus change the coordinate of the A as,

        [tex]A"=A'(-x,y)\\A"=(-4,2)[/tex]

  • The coordinate of B' is [tex](4,4)[/tex] Thus change the coordinate of the B as,

        [tex]B"=B'(-x,y)\\B"=(-4,4)[/tex]

  • The coordinate of C' is [tex](2,4)[/tex] Thus change the coordinate of the C as,

        [tex]C"=C'(-x,y)\\C"=(-2,4)[/tex]

Thus the coordinate of triangle after the rotation and reflection is A"(-4,2), B"(-4,4) and C"(-2,4). Hence the triangle 1 shows the final image.

Learn more about the rotation and reflection of figure here;

https://brainly.com/question/17174293