Respuesta :

Answer:

The solution is m = -2

Step-by-step explanation:

The given rational equation is

[tex]\frac{m}{m+4}+\frac{4}{4-m}=\frac{m^2}{m^2-16}[/tex]

We'll simplify the left hand side first.

The LCD is (m+4)(4-m)

Hence, multiply and divide the first term by 4-m and second by m +4

[tex]\frac{m(4-m)}{(m+4)(4-m)}+\frac{4(m+4)}{(4-m)(m+4}=\frac{m^2}{m^2-16}[/tex]

Use the difference of squares rule [tex]a^2-b^2=(a+b)(a-b)[/tex]

[tex]\frac{m(4-m)}{4^2-m^2}+\frac{4(m+4)}{4^2-m^2}=\frac{m^2}{m^2-16}[/tex]

We can now add the numerator

[tex]\frac{m(4-m)+4(m+4)}{4^2-m^2}=\frac{m^2}{m^2-16}[/tex]

On simplifying, we get

[tex]\frac{4m-m^2+4m+16}{16-m^2}=\frac{m^2}{m^2-16}[/tex]

Add the like terms

[tex]\frac{8m-m^2+16}{16-m^2}=\frac{m^2}{m^2-16}[/tex]

Multiply and divide left hand side by -1

[tex]\frac{m^2-8m-16}{m^2-16}=\frac{m^2}{m^2-16}[/tex]

We can cancel the denominator

[tex]-8m-16=0\\8m=-16[/tex]

Divide both sides by 8

[tex]m=-2[/tex]

The solution is m = -2

Answer:

B) -2

Step-by-step explanation: