Respuesta :
Answer: [tex]y=-\frac{1}{3}x +3[/tex]
Step-by-step explanation: We are given coordinates of the graph (0,3) and (3,2).
We need to find the equation of line for given coordinates (0,3) and (3,2).
First we need to find the slope between given points.
[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\left(x_1,\:y_1\right)=\left(0,\:3\right),\:\left(x_2,\:y_2\right)=\left(3,\:2\right)[/tex]
[tex]m=\frac{2-3}{3-0}[/tex]
[tex]m=-\frac{1}{3}[/tex]
We got slope m=[tex]-\frac{1}{3}[/tex]
We have first point (0,3) and this represents y-intercept at 3.
Therefore, applying slope-intercept form y=mx+b, we get
[tex]y=-\frac{1}{3}x +3[/tex]
Therefore, correct option is D option : [tex]y=-\frac{1}{3}x +3[/tex]