We know that when [tex]A=(x_A,y_A)[/tex] and [tex]B=(x_B,y_B)[/tex] the midpoint of the line segment AB is given by:
[tex]M=\left(\dfrac{x_A+x_B}{2},\dfrac{y_A+y_B}{2}\right)[/tex]
Here [tex]A=(-2,5)[/tex] and [tex]B=(6,-9)[/tex] so:
[tex]M=\left(\dfrac{x_A+x_B}{2},\dfrac{y_A+y_B}{2}\right)=\left(\dfrac{-2+6}{2},\dfrac{5+(-9)}{2}\right)=\\\\\\=\left(\dfrac{4}{2},\dfrac{5-9}{2}\right)=\left(2,\dfrac{-4}{2}\right)=\boxed{\left(2,-2\right)}[/tex]