Respuesta :
[tex]f_X(x)=\begin{cases}\frac1{16-10}=\frac16&\text{for }10\le x\le16\\0&\text{otherwise}\end{cases}[/tex]
[tex]\implies\mathbb E(X)=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\int_{10}^{16}\frac x6\,\mathrm dx=13[/tex]
[tex]\implies\mathbb E(X)=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\int_{10}^{16}\frac x6\,\mathrm dx=13[/tex]
Answer:
⇢ [tex]{\boxed{\bold{Average \: amount = 13 \: ounces}}}[/tex]
Step-by-step-explanation:
Given question:-
⇢ A machine dispenses water into a glass. Assuming that the amount of water dispensed follows a continuous uniform distribution from 10 ounces to 16 ounces.
ㅤ
Find:-
⇢ The average amount of water dispensed by the machine is
ㅤ
Calculations:-
⇢ Let us assume 'a and b' as the first ounce and the second ounce.
ㅤ
- [tex]\rm{a = 10 \: ounce}[/tex]
- [tex]\rm{b = 16 \: ounce}[/tex]
ㅤ
⇢ [tex]{\boxed{\bold{\dfrac{(a + b)}{2}}}}[/tex]
⇢ [tex]\rm{\dfrac{(10 + 16)}{2}}[/tex]
⇢ [tex]\rm{\cancel{\dfrac{26}{2}}}[/tex]
⇢ [tex]{\boxed{\bold{13 \: ounces}}}[/tex]
ㅤ