Respuesta :
[tex]x^2+12x+43=0
[/tex]
[tex]x= \dfrac{-b+ \sqrt{b^2-4ac} }{2a}, \dfrac{-b- \sqrt{b^2-4ac} }{2a}[/tex]
[tex]x= \dfrac{-12+ \sqrt{12^2-4*43} }{2} [/tex],[tex]\dfrac{-12- \sqrt{12^2-4*43} }{2}[/tex]
[tex]x= \dfrac{-12+2 \sqrt{7i} }{2}, \dfrac{-12-2 \sqrt{7i} }{2}[/tex]
[tex]x=-6+ \sqrt{7i},-6- \sqrt{7i} [/tex]
[tex]x= \dfrac{-b+ \sqrt{b^2-4ac} }{2a}, \dfrac{-b- \sqrt{b^2-4ac} }{2a}[/tex]
[tex]x= \dfrac{-12+ \sqrt{12^2-4*43} }{2} [/tex],[tex]\dfrac{-12- \sqrt{12^2-4*43} }{2}[/tex]
[tex]x= \dfrac{-12+2 \sqrt{7i} }{2}, \dfrac{-12-2 \sqrt{7i} }{2}[/tex]
[tex]x=-6+ \sqrt{7i},-6- \sqrt{7i} [/tex]
x²+12x+43=0
This a quadratic equation ax²+bx+c=0 (in our case a=1, b=12, & c=43)
to solve it, means to calculate the value of x which render this equation nil
In short we have to find the roots x' & x'' by applying the following formula:
x' = [-b+√(b² - 4ac)] / 2a & x" =[-b - √(b² - 4ac)] / 2a
If you plug the related values you will notice the amount inside the radical (√)
is negative. As you know such an amount should be positif, hence their is no roots & consequently no solution
This a quadratic equation ax²+bx+c=0 (in our case a=1, b=12, & c=43)
to solve it, means to calculate the value of x which render this equation nil
In short we have to find the roots x' & x'' by applying the following formula:
x' = [-b+√(b² - 4ac)] / 2a & x" =[-b - √(b² - 4ac)] / 2a
If you plug the related values you will notice the amount inside the radical (√)
is negative. As you know such an amount should be positif, hence their is no roots & consequently no solution