Find the accumulated value of an investment of $1500 for 5 years at an interest rate of 7% if the money is a.compounded semiannually b.compounded quarterly c. Compounded monthly d.compounded continuously

Respuesta :

a)

[tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to \frac{7}{100}\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semi-annually, thus twice} \end{array}\to &2\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+\frac{0.07}{2}\right)^{2\cdot 5}[/tex]

b)

[tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to \frac{7}{100}\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, 4 quarters, thus} \end{array}\to &4\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+\frac{0.07}{4}\right)^{4\cdot 5}[/tex]

c)

[tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to \frac{7}{100}\to &0.07\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, 12 months, thus} \end{array}\to &12\\ t=years\to &5 \end{cases} \\\\\\ A=1500\left(1+\frac{0.07}{12}\right)^{12\cdot 5}[/tex]

d)

[tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=Pe^{rt} \quad \begin{cases} A=\textit{compounded amount}\\ P=\textit{original amount deposited}\to &\$1500\\ r=rate\to7\%\to \frac{7}{100}\to &0.07\\ t=years\to &5 \end{cases} \\\\\\ A=1500e^{0.07\cdot 5}[/tex]