Respuesta :

irspow
f(x)=-7/x

dy/dx=(-1*-7)/x^2

dy/dx=7/x^2

dy/dx(-3)=7/(-3)^2

dy/dx(-3)=7/9

Answer:

The derivative of f(x) at x= -3 is:

               [tex]f'(-3)=\dfrac{-7}{9}[/tex]

Step-by-step explanation:

The function f(x) is given by:

               [tex]f(x)=\dfrac{-7}{x}[/tex]

We are asked to find the derivative of x at x= -3

We know that the derivative of f(x) at x=a is calculated by using the formula:

[tex]f'(a)= \lim_{h \to 0} \dfrac{f(a+h)-f(a)}{h}[/tex]

i.e.

[tex]f'(-3)= \lim_{h \to 0} \dfrac{\dfrac{7}{-3+h}-\dfrac{7}{-3}}{h}\\\\i.e.\\\\f'(-3)=\lim_{h \to 0} \dfrac{\dfrac{7\times (-3)-7\times (h-3)}{(-3)(-3+h)}}{h}\\\\f'(-3)=\lim_{h \to 0} \dfrac{-21-7h+21}{h(h-3)(-3)}\\\\f'(-3)=\lim_{h \to 0} \dfrac{-7h}{h(h-3)(-3)}\\\\f'(-3)=\lim_{h \to 0} \dfrac{-7}{(h-3)(-3)}\\\\f'(-3)=\dfrac{-7}{9}[/tex]