Respuesta :

(fog)(x)= f{g(x)}

for 2nd option,  the value is f(2/x)=2/(2/x)=x

Answer:

Option 2 is correct.

Step-by-step explanation:

We will evaluate the given functions as:

(fog)(x)=f(g(x))

Case1:

[tex]f(x)=x^2\text{and}g(x)=\frac{1}{x}[/tex]

[tex](fog)(x)=f(\frac{1}{x})=(\frac{1}{x})^2[/tex]

Which is not a function because it will not give different values of y for different values of x.

Case2:

[tex]f(x)=\frac{2}{x}\text{and}g(x)=\frac{2}{x}[/tex]

[tex](fog)(x)=f(\frac{2}{x})=(\frac{2}{\frac{2}{x}})=x[/tex]

This will give different values of y for different values of x

Hence, Option 2 is correct.