Respuesta :

[tex]\bf sec(\theta)=\cfrac{1}{cos(\theta)}\\\\ -----------------------------\\\\ 3\sqrt{2}sec(\theta)+7=1\implies 3\sqrt{2}sec(\theta)=-6\implies sec(\theta)=\cfrac{-6}{3\sqrt{2}}\\\\ -----------------------------\\\\ now\qquad -\cfrac{6}{3\sqrt{2}}\implies -\cfrac{2}{\sqrt{2}}\implies -\cfrac{2}{\sqrt{2}}\cdot \cfrac{\sqrt{2}}{\sqrt{2}}\implies -\cfrac{2\sqrt{2}}{2}\implies -\sqrt{2}\\\\[/tex]

[tex]\bf -----------------------------\\\\ \cfrac{1}{cos(\theta)}=-\sqrt{2}\implies \cfrac{1}{-\sqrt{2}}=cos(\theta)\\\\ -----------------------------\\\\ now\quad -\cfrac{1}{\sqrt{2}}\cdot \cfrac{\sqrt{2}}{\sqrt{2}}\implies -\cfrac{\sqrt{2}}{2}\\\\ -----------------------------\\\\ -\cfrac{\sqrt{2}}{2}=cos(\theta)\implies \theta= \begin{cases} \frac{3\pi }{4}\\\\ \frac{5\pi }{4} \end{cases}[/tex]