What is the product?
[tex] \frac{5k}{6}* \frac{3}{2k^3} [/tex]
A. [tex] \frac{5}{4k^2} [/tex]
B. [tex] \frac{5k^2}{4} [/tex]
C. [tex] \frac{5k^4}{4} [/tex]
D. [tex] \frac{5}{4k^4} [/tex]

Respuesta :

To get the product for this equation you must first simplify the equation, that leaves you with : 

(15k) / (12k^3)  Then you take out the constants:

(15) / (12) * (k) / (k^3)  Then simplify (15) / (12) to (5) / (4) :

(5) / (4) * (k) / (k^3) Then use the quotient rule which is (x^a) / x^b) = x^a-b  :

(5k^1-3) / (4) simply 1-3 to -2

(5k^-2) / (4)

THEN USE THE NEGATIVE POWER RULE which is x^-a = (1) / x^a)  :

(5 x (1/k^2) ) / (4) 

THEN SIMPLIFY 5 * (1) / (k^2) to (5) / (k^2)

(   (5) / (k^2)   /    (4)  )   THEN SIMPLY AGAIN

That leaves you with the answer :   (5) / (4k^2)

So the correct answer to this problem is answer choice (A)  (5) / (4k^2)