Respuesta :

Let's rewrite the binomial as:
[tex](1 - 2x)^{19}[/tex]

[tex]\text{Binomial expansion:} (1 + x)^{n} = \sum_{r = 0}^n\left(\begin{array}{ccc}n\\r\end{array}\right) (x)^{r}[/tex]

Using the binomial expansion, we get:
[tex]\text{Binomial expansion: } (1 - 2x)^{19} = \sum_{r = 0}^{19}\left(\begin{array}{ccc}19\\r\end{array}\right) (-2x)^{r}[/tex]

For the 15th term, we want the term where r is equal to 14, because of the fact that the first term starts when r = 0. Thus, for the 15th term, we need to include the 0th or the first term of the binomial expansion.

Thus, the fifteenth term is:
[tex]\text{Binomial expansion (15th term):} \left(\begin{array}{ccc}19\\14\end{array}\right) (-2x)^{14}[/tex]