Respuesta :

Answer:

The zeros of the given function  [tex]f(x)=x^2+17x+72[/tex] is [tex]\left(x+8\right)\left(x+9\right)[/tex] are -8 and -9.

Step-by-step explanation:

Given : Function  [tex]f(x)=x^2+17x+72[/tex]

We have to find the zeros of the functions.

Consider the given  Function  [tex]f(x)=x^2+17x+72[/tex]

Since, we have to find the zeros of the given functions.

Put f(x) = 0

Thus,  [tex]x^2+17x+72=0[/tex]

We can solve the given equation using middle term splitting method.

17x can be written as 8x + 9x

[tex]x^2+17x+72=0[/tex] can be written as [tex]x^2+8x+9x+72=0[/tex]

Taking x common from first two term and 9 common from last two terms, we have,

[tex]x(x+8)+9(x+8)=0[/tex]

Simplify, we have,

[tex]\left(x+8\right)=0[/tex] or [tex](x+9\right)=0[/tex]

x = -8 and x = -9

Apply zero product rule,[tex]a\cdot b= 0 \Rightarrow a=0 \ or \ b=0[/tex]

[tex]\left(x+8\right)\left(x+9\right)=0[/tex]

Thus, The zero of the given function  [tex]f(x)=x^2+17x+72[/tex] is [tex]\left(x+8\right)\left(x+9\right)[/tex] are -8 and -9.

Answer:

-8 and -9 are correct!

Step-by-step explanation:

I took the test :)