DessB
contestada

Let f(x)=20/1+9e^3x .



What are the asymptotes of the graph of f(x) ?

Select each correct answer.



y = 3

y = 0

y = 9

y = 20

Respuesta :

the answer is the last one

Answer:

y = 0 and y = 20

Step-by-step explanation:

The given function is [tex]\left(\frac{20}{\left(1+9e^{3x}\right)}\right)[/tex]

There is no vertical asymptotes because the denominator will never be zero.

Horizontal asymptotes are given by

[tex]y=\lim _{x\to -\infty }f(x)\\\\y=\lim _{x\to \:-\infty \:}\left(\frac{20}{1+9e^{3x}}\right)[/tex]

Take the constant 20 out of the limit

[tex]20\cdot \lim \:_{x\to \:-\infty \:}\left(\frac{1}{1+9e^{3x}}\right)[/tex]

Now, we can further simplify as follows

[tex]y=20\cdot \frac{\lim _{x\to \:-\infty \:}\left(1\right)}{\lim _{x\to \:-\infty \:}\left(1+9e^{3x}\right)}\\\\y=20\cdot \frac{1}{1}\\\\y=20[/tex]

Similarly, the second horizontal asymptote is

[tex]y=\lim _{x\to \infty }\left(\frac{20}{\left(1+9e^{3x}\right)}\right)[/tex]

We can simplify this limit as we did the previous one

[tex]y=20\cdot \frac{\lim _{x\to \infty \:}\left(1\right)}{\lim _{x\to \infty \:}\left(1+9e^{3x}\right)}\\\\y=20\cdot \frac{1}{\infty \:}\\\\y=0[/tex]

Hence, asymptotes of the graph of f(x) are

y = 0 and y = 20