Answer:
1657.47 years
Step-by-step explanation:
Let's find the answer by using the decay formula:
[tex]Q=q*e^{-kt}[/tex] where:
Q=quantity remaining after 't' years
q=initial amount
k=decay constant
t=time in years
Using the information provided by the problem we have:
[tex]20=24*e^{-0.00011t}[/tex]
[tex]ln(20/24)/(-0.00011)=t[/tex]
[tex]1657.47=t[/tex]
In conclusion, it will take 1657.47 years.