What is the difference? (2x+5)/(x^2-3x)-(3x+5)/x^3-9x)- (x+1)/x^2-9)

a. (x+5)(x+2)/(x^3-9x)
b. (x+5)(x+4)/(x^3-9x)
c. (-2x+11)/(x^3-12x-9)
d. 3(x+2)/(x^2-3x)

Respuesta :

A)(x+5)(x+2)/(x^3-9x)

Answer: Option A is correct  [tex]\frac{(x+2)(x+5)}{(x^{3}-9)}[/tex]

Explanation:

Given equation[tex]\frac{2x+5}{x^{2} -3x}[/tex][tex] - \frac{3x+5}{x^{3} -9x}[/tex][tex] - \frac{x+1}{x^{2} -9}[/tex]

will become as below after taking out the lcm x(x-3)(x+3)

[tex]\frac{2x+5}{x(x-3)} -\frac{3x+5}{x(x-3)(x+3)} -\frac{x+1}{(x-3)(x+3)}[/tex]

after simplifying

we will get [tex]\frac{(2x+5)(x+3)-(3x+5)-x(x+1)}{x(x-3)(x+3)}[/tex]

After further simplification we will get

[tex]\frac{2x^{2} +11x+15-3x-5-x^{2}-x}{x( x^{2}-9)}[/tex]

On more simplification we will get

[tex]\frac{x^{2} +7x+10}{x(x^{2}-9)}[/tex]

finally after simplification we will get

[tex]\frac{(x+2)(x+5)}{x(x^{2}-9)}[/tex]

which will lead to the final result

[tex]\frac{(x+2)(x+5)}{x^{3}-9x}[/tex]