Respuesta :
Answer:
option B) h(–0.5) = 0.25
Step-by-step explanation:
To find out which equation satisfies h(x) we need to check with each option
We plug in x value
A) h(–1.25) = –0.5
Plug in -1.25 for x in h(x) = 16^x
[tex]h(-1.25)= 16^{-1.25}=0.03125[/tex]
That is not true
B) h(–0.5) = 0.25
Plug in -0.5 for x
[tex]h(-0.5)= 16^{-0.5}=0.25[/tex]
That is true.
C) h(0.75) = 12
Plug in 0.75 for x
[tex]h(0.75)= 16^{0.75}=8[/tex]
That is not true.
D) h(1.25) = 20
Plug in 1.25 for x
[tex]h(1.25)= 16^{1.25}=32[/tex]
That is not true.
Answer:
Option B is correct
[tex]h(-0.5) = 0.25[/tex].
Step-by-step explanation:
Given the function:
[tex]h(x) = 16^x[/tex]
For x = -1.25, we have;
[tex]h(-1.25) = 16^{-1.25} = \frac{1}{16^{1.25}} = \frac{1}{32} = 0.03125[/tex]
⇒[tex]h(-1.25) = 0.01325[/tex]
For x = -0.5
[tex]h(-0.5) = 16^{-0.5} = \frac{1}{16^{0.5}} = \frac{1}{4} = 0.25[/tex]
⇒[tex]h(-0.5) = 0.25[/tex].
For x = 0.75
[tex]h(0.75) = 16^{0.75} =8[/tex]
⇒[tex]h(0.75) =8[/tex]
For x = 1.25,
[tex]h(1.25) = 16^{1.25} =32[/tex]
⇒[tex]h(1.25) =32[/tex]
From the given option we have only equation that is true is: [tex]h(-0.5) = 0.25[/tex].