Respuesta :

Answer:

option B) h(–0.5) = 0.25

Step-by-step explanation:

To find out which equation satisfies h(x) we need to check with each option

We plug in x  value

A) h(–1.25) = –0.5

Plug in -1.25 for x  in h(x) = 16^x

[tex]h(-1.25)= 16^{-1.25}=0.03125[/tex]

That is not true

B) h(–0.5) = 0.25

Plug in -0.5 for x  

[tex]h(-0.5)= 16^{-0.5}=0.25[/tex]

That is true.

C)  h(0.75) = 12

Plug in 0.75 for x  

[tex]h(0.75)= 16^{0.75}=8[/tex]

That is not true.

D)  h(1.25) = 20

Plug in 1.25 for x  

[tex]h(1.25)= 16^{1.25}=32[/tex]

That is not true.

Answer:

Option B is correct

[tex]h(-0.5) = 0.25[/tex].

Step-by-step explanation:

Given the function:

[tex]h(x) = 16^x[/tex]

For x = -1.25, we have;

[tex]h(-1.25) = 16^{-1.25} = \frac{1}{16^{1.25}} = \frac{1}{32} = 0.03125[/tex]

⇒[tex]h(-1.25) = 0.01325[/tex]

For x = -0.5

[tex]h(-0.5) = 16^{-0.5} = \frac{1}{16^{0.5}} = \frac{1}{4} = 0.25[/tex]

⇒[tex]h(-0.5) = 0.25[/tex].

For x = 0.75

[tex]h(0.75) = 16^{0.75} =8[/tex]

⇒[tex]h(0.75) =8[/tex]

For x = 1.25,

[tex]h(1.25) = 16^{1.25} =32[/tex]

⇒[tex]h(1.25) =32[/tex]

From the given option we have only equation that is true is: [tex]h(-0.5) = 0.25[/tex].