Respuesta :
Set up a proportional ratio considering that the total area is πr^2 so:
a/(πr^2)=α°/360°
a=(απr^2)/360, since α=60° and r=5
a=(60π5^2)/360 in^2
a≈13.0899...
a≈13.1 in^2 (to nearest tenth of a square inch)
a/(πr^2)=α°/360°
a=(απr^2)/360, since α=60° and r=5
a=(60π5^2)/360 in^2
a≈13.0899...
a≈13.1 in^2 (to nearest tenth of a square inch)
Answer:
The answer is the option C
[tex]13.1\ in^{2}[/tex]
Step-by-step explanation:
we know that
The area of a circle is equal to
[tex]A=\pi r^{2}[/tex]
In this problem we have
[tex]r=5\ in[/tex]
substitute
[tex]A=\pi (5)^{2}=25\pi\ in^{2}[/tex]
[tex]360\°[/tex] subtends the complete circle of area equal to [tex]25\pi\ in^{2}[/tex]
so by proportion
Find the area of the sector with a central angle of [tex]60\°[/tex]
[tex]\frac{25\pi}{360}\frac{\ in^{2}}{degrees}=\frac{x}{60}\frac{\ in^{2}}{degrees} \\ \\x=25\pi *60/360\\ \\ x= 13.1\ in^{2}[/tex]