contestada

A random sample of 125 students is chosen from a population of 4,000 students. If the mean IQ in the sample is 100 with a standard deviation of 8, what is the 98% confidence interval for the students' mean IQ score?

Respuesta :

Hiya! The answer is 98.33−101.67 :)

Answer: 98.33 - 101.67


Step-by-step explanation:

The given Sample mean n= 100  

Standard deviation[tex]\sigma=8[/tex]

Mean IQ in the sample [tex]\bar{x}=125[/tex]

Standard error of mean = [tex]\frac{\sigma}{\sqrt{\bar{x}}}[/tex]

Standard error of mean = [tex]\frac{8}{\sqrt{125}}[/tex]

Thus, standard error =[tex]\frac{8}{11.180}[/tex]

Standard error of mean (SE)= 0.7155  

We know that  z - score for 98% confidence interval is 2.33 .

Now, 98% confidence interval will be

n-z(SE) and n+z(SE)

[tex]=100-(0.7155)(2.33)\ and\ 100+(0.7155)(2.33)[/tex]  

[tex]=100-1.66726\ and\ 100+1.66726[/tex]

[tex]=98.33274\ and\ 101.667[/tex]

Hence, the 98% confidence interval for the students' mean IQ score will be 98.33 - 101.67