Respuesta :
distribute the 4/5 to the x and 15 so you should have y-1=4/5x+12
next you must get y alone so add one to both sides of the equation
the final product is y=4/5x+13
next you must get y alone so add one to both sides of the equation
the final product is y=4/5x+13
[tex]y - 1 = \frac{4}{5(x + 15)} [/tex]
[tex]y - 1 = \frac{4}{5(x) + 5(15)} [/tex]
[tex]y - 1 = \frac{4}{5x + 75} [/tex]
[tex]y - 1 = 0.8x - 0.053[/tex]
[tex]y - 1 + 1 = 0.8x - 0.053 + 1[/tex]
[tex]y = 0.8x + 0.947[/tex]
[tex]y - 1 = \frac{4}{5(x) + 5(15)} [/tex]
[tex]y - 1 = \frac{4}{5x + 75} [/tex]
[tex]y - 1 = 0.8x - 0.053[/tex]
[tex]y - 1 + 1 = 0.8x - 0.053 + 1[/tex]
[tex]y = 0.8x + 0.947[/tex]