Respuesta :

(9,5)
Y=k/x
5=k/9 solve for k
K=5*9=45 now use it to solve for the second pair
(X,6)
Y=k/x
6=45/x solve for x
X=45/6==7.5.....answer

Answer:

The missing value x is, [tex]\frac{15}{2}[/tex] or [tex]7\frac{1}{2}[/tex]

Step-by-step explanation:

The Inverse variation problems can be solved by using the equation, i.e,

[tex]y \propto \frac{1}{x}[/tex].

use constant variation k to write the above equation as:

[tex]y=\frac{k}{x}[/tex]                         ......[1]

Now, use the given information to calculate the value of k;

we need to find the value of k ; when x=9  and y=5

[tex]5=\frac{k}{9}[/tex] or

[tex]k =9\times 5[/tex]

Simplify:

k =45.

Rewrite the equation [1] by substituting the value of k =45,

⇒ [tex]y = \frac{45}{x}[/tex]                     ......[2]

Substitute the value y=6 in equation[2] to find x:

[tex]6 =\frac{45}{x}[/tex] or

[tex]x = \frac{45}{6}[/tex] or [tex]x=\frac{15}{2}=7\frac{1}{2}[/tex]

Therefore, the missing value x is, [tex]\frac{15}{2}=7\frac{1}{2}[/tex]