Respuesta :
[tex]\bf 72=log(x)\iff 72=log_{10}(x)\\\\
-----------------------------\\\\
\textit{cancellation rules}\\\\
log_{{ a}}{{ a}}^x\implies x\qquad \qquad
{{ a}}^{log_{{ a}}x}=x\impliedby \textit{let's use this one}\\\\
-----------------------------\\\\
10^{72}=10^{log_{10}(x)}\implies 10^{72}=x[/tex]
Answer: [tex]x = 10^{72}[/tex]
Explanation: Logarithms are usually written in base of 10, unless otherwise specified.
So, we can rewrite the logarithm as:
[tex]72 = log_{10} x[/tex]
Rewriting it in exponent form, we get:
[tex]x = 10^{72}[/tex]
Explanation: Logarithms are usually written in base of 10, unless otherwise specified.
So, we can rewrite the logarithm as:
[tex]72 = log_{10} x[/tex]
Rewriting it in exponent form, we get:
[tex]x = 10^{72}[/tex]