Respuesta :

The answer:  "  h  =  [tex] \frac{S}{2 \pi r} [/tex]   −   r  " .
_________________________________________________
Explanation:
_________________________________________________
Given:
_________________________________________________
The formula/equation for the "surface area, "S", for a cylinder:
_________________________________________________
   
         S = 2 π r h  +  2 π r²  ; 
 
                           in which:  
                                             S = the surface area ;
                                             r = radius ;
                                             h = height;
_____________________________________________
Rearrange the equation; and isolate "h" on ONE side of the equation;
__________________________________________________
    So, consider:   
 
              
2 π r h  +  2 π r²  ;  
__________________________________________________
Factor out a "
2 π r " ;
__________________________________________________

S =
2 π r * (h + r) ;

Divide each side of the equation by "
2 π r " ;
__________________________________________________
      S / (
2 π r) = [(2 π r) * (h + r)] / [2 π r] ;

to get:  
__________________________________________________
      
S / (2 π r) = h + r ;

 h + r  = S / (2 π r) ;
__________________________________________________
          Subtract "r" from EACH side of the equation; to isolate "h" on one side of the equation;  and to rewrite/rearrange the formula in terms of "h" ; 
____________________________________________________
  
               h + r − r = [S / (2 π r)] − r  ;
____________________________________________________
to get: 
____________________________________________________
                 h  =  [tex] \frac{S}{2 \pi r} [/tex]   −   r  .
____________________________________________________