Respuesta :
When [tex]x<2[/tex], you have
[tex]F(x)=\displaystyle\int_x^2(2t+4)\,\mathrm dt[/tex]
[tex]F(x)=(t^2+4t)\bigg|_{t=x}^{t=2}[/tex]
[tex]F(x)=(2^2+4(2))-(x^2+4x)[/tex]
[tex]F(x)=12-4x-x^2[/tex]
Even when [tex]x>2[/tex], you would get the same answer.
[tex]F(x)=\displaystyle\int_x^2(2t+4)\,\mathrm dt=-\int_2^x(2t+4)\,\mathrm dt[/tex]
[tex]F(x)=-((x^2+4x)-12)[/tex]
[tex]F(x)=12-4x-x^2[/tex]
Yet none of the results match (B is the closest, but it's still not correct).
Are you sure it's the integral [tex]\displaystyle\int_x^2[/tex], and not the other way around, [tex]\displaystyle\int_2^x[/tex]?
[tex]F(x)=\displaystyle\int_x^2(2t+4)\,\mathrm dt[/tex]
[tex]F(x)=(t^2+4t)\bigg|_{t=x}^{t=2}[/tex]
[tex]F(x)=(2^2+4(2))-(x^2+4x)[/tex]
[tex]F(x)=12-4x-x^2[/tex]
Even when [tex]x>2[/tex], you would get the same answer.
[tex]F(x)=\displaystyle\int_x^2(2t+4)\,\mathrm dt=-\int_2^x(2t+4)\,\mathrm dt[/tex]
[tex]F(x)=-((x^2+4x)-12)[/tex]
[tex]F(x)=12-4x-x^2[/tex]
Yet none of the results match (B is the closest, but it's still not correct).
Are you sure it's the integral [tex]\displaystyle\int_x^2[/tex], and not the other way around, [tex]\displaystyle\int_2^x[/tex]?
Answer:
Option B - [tex]F(x)=x^2+4x-12[/tex]
Step-by-step explanation:
Given : Use the graph of [tex]f(t)=2t+4[/tex] on the interval [-4, 6].
To find : Write the function F(x), where F(x)=the integral from x to 2 of f(t) dt?
Solution :
The function [tex]f(t)=2t+4[/tex]
To write F(x), we integrate the function from x to 2
i.e. [tex]F(x)=\int\limits^2_x {f(t)} \, dt[/tex]
[tex]F(x)=\int\limits^2_x {2t+4} \, dt[/tex]
[tex]F(x)=[2(\frac{t^2}{2})+4t]\limits^2_x[/tex]
[tex]F(x)=[t^2+4t]\limits^2_x[/tex]
[tex]F(x)=(2^2+4(2))-(x^2+4(x))[/tex]
[tex]F(x)=4+8-x^2-4x[/tex]
[tex]F(x)=12-x^2-4x[/tex]
[tex]F(x)=x^2+4x-12[/tex]
Therefore, Option B is correct.