∠A is an acute angle in a right triangle. Given that cos A=12/13, what is the ratio for sin A? Enter your answer in the boxes as a fraction in simplest form

Respuesta :

5/13. Very sure on this one!

Answer:

sin A = [tex]\frac{5}{13}[/tex]

Step-by-step explanation:

As per the statement:

∠A is an acute angle in a right triangle.

Given that:

[tex]\cos A = \frac{12}{13}[/tex]

We have to find Sin A:

Using the formula:

[tex]\sin A= \sqrt{1-\cos^2 A}[/tex]

Substitute the given values we have;

[tex]\sin A= \sqrt{1-(\frac{12}{13})^2}[/tex]

⇒[tex]\sin A = \sqrt{1-\frac{144}{169}} = \sqrt{\frac{169-144}{169}}[/tex]

⇒[tex]\sin A = \sqrt{\frac{25}{169}} = \sqrt{\frac{5^2}{13^2}} = \frac{5}{13}[/tex]

Therefore, the value of sin A as a fraction in simplest form is, [tex]\frac{5}{13}[/tex]