Respuesta :
Answer:
a) the value of 135 because it is not greater than 136.5
Step-by-step explanation:
Given that
n = sample size =85
Mean = 146
std dev =34
Std error of sample = 34/sqrt 85
= 3.6878
99% z critical value = 2.58
Margin of error = ±9.515
Confidence interval lower bound = 146-9.515 = 136.485
Upper bound = 146+9.515 =155.515
Hence we find that 135 is less than lower bound, hence 135 does not lie within 99% confidence interval
a) the value of 135 because it is not greater than 136.5
The only value that is outside the 99% confidence interval for the population mean is; A: 135 because it is not greater than 136.5.
Confidence Interval
We are given;
Sample size; n =85
Mean; x' = 146
Standard deviation; σ =34
Standard error of sample; s = σ/√n = 34/√85 = 3.6878
Confidence Level = 99%
Formula for confidence interval is;
CI = x' ± z(s/√n)
where z is critical value at confidence level
At 99% confidence level, z = 2.58
Thus;
CI = 146 ± 2.58(3.6878)
Margin of error = 9.515
CI = 146 ± 9.515 = 136.485
CI = (146 - 9.515) and (146 + 9.515)
CI = 136.485, 155.515
The only value that is outside the 99% confidence interval for the population mean is 135 because it is not greater than 136.5.
Read more about Confidence interval at; https://brainly.com/question/17097944