Respuesta :

Ok 
First use the sine rule to find one value

b / sin B = c / sin C
20.2 / sin B  =  18.3 / sin 38

sinB =  20.2 * sin 38  / 18.3   =  0.6796
m < B = 42.8 degrees

the other possible measure is 180 - 42.8 =  137.2 degrees

Answer:

Two possible triangle:

  • [tex]a=29.3, b=20.2, c=18.3, A=99^{\circ}, B=43^{\circ}\text{ and } C=38^{\circ}[/tex]
  • [tex]a=2.3, b=20.2, c=18.3, A=5^{\circ}, B=137^{\circ}\text{ and } C=38^{\circ}[/tex]

Step-by-step explanation:

We are given some info about triangle ABC.

b=20.2, c=18.3, C=38°

Using sine law we can find another part of triangles.

[tex]\text{Sine law: } \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

[tex]\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Substitute b=20.2, c=18.3, C=38° into above formula and solve for B

[tex]\dfrac{20.2}{\sin B}=\dfrac{18.3}{\sin 38^{\circ}}[/tex]

[tex]\sin B=\dfrac{20.2\times \sin 38^{\cic}}{18.3}[/tex]

[tex]\sin B=0.6796[/tex]

Two possible value of B

Case 1:

[tex]B=42.8^{\circ}\approx 43^{\circ}[/tex]

[tex]A+B+C=180^{\circ}[/tex]            (Angle sum property of triangle)

[tex]A=180^{\circ}-38^{\circ}-43^{\circ}=99^{\circ}[/tex]  

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}[/tex]

[tex]a=\dfrac{20.2\times \sin99^{\circ}}{\sin 43^{\circ}}\Rightarrow 29.3[/tex]

Case 2:

[tex]B=137^{\circ}[/tex]

[tex]A+B+C=180^{\circ}[/tex]            (Angle sum property of triangle)

[tex]A=180^{\circ}-38^{\circ}-137^{\circ}=5^{\circ}[/tex]  

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}[/tex]

[tex]a=\dfrac{20.2\times \sin5^{\circ}}{\sin 137^{\circ}}\Rightarrow 2.3[/tex]

Two possible triangle:

  • [tex]a=29.3, b=20.2, c=18.3, A=99^{\circ}, B=43^{\circ}\text{ and } C=38^{\circ}[/tex]
  • [tex]a=2.3, b=20.2, c=18.3, A=5^{\circ}, B=137^{\circ}\text{ and } C=38^{\circ}[/tex]

Thus, Two possible triangles.