Respuesta :
Answer:
[tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 8(2\sqrt{2} - 1)[/tex]
General Formulas and Concepts:
Algebra I
Terms/Coefficients
- Expanding/Factoring
Exponential Property [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integrand] Simplify: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = \int\limits^1_0 {24x\sqrt{1 + x^2}} \, dx[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 24\int\limits^1_0 {x\sqrt{1 + x^2}} \, dx[/tex]
Step 3: integrate Pt. 2
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 1 + x^2[/tex]
- [u] Differentiate [Basic Power Rule, Derivative Properties]: [tex]\displaystyle du = 2x \ dx[/tex]
- [Bounds] Switch: [tex]\displaystyle \left \{ {{x = 1 ,\ u = 1 + 1^2 = 2} \atop {x = 0 ,\ u = 1 + 0^2 = 1}} \right.[/tex]
Step 4: Integrate Pt. 3
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 12\int\limits^1_0 {2x\sqrt{1 + x^2}} \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 12\int\limits^2_1 {\sqrt{u}} \, du[/tex]
- [Integrand] Rewrite [Exponential Property - Root Rewrite]: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 12\int\limits^2_1 {u^\big{\frac{1}{2}}} \, du[/tex]
- [Integral] Reverse Power Rule: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 12 \bigg( \frac{2u^\big{\frac{3}{2}}}{3} \bigg) \bigg| \limits^2_1[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 12 \bigg( \frac{4\sqrt{2}}{3} - \frac{2}{3} \bigg)[/tex]
- Factor: [tex]\displaystyle \int\limits^1_0 {4x(6\sqrt{1 + x^2})} \, dx = 8(2\sqrt{2} - 1)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration