Respuesta :
Answer:
The correct option is B.
Step-by-step explanation:
The given function is
[tex]f(x)=x^3[/tex]
The translation of a function is defined as
[tex]g(x)=f(x+a)+b[/tex]
If a>0, then the graph of f(x) shift a units left and if a<0, then the graph of f(x) shift a units right.
If b>0, then the graph of f(x) shift b units up and if b<0, then the graph of f(x) shift b units down.
It is given that the graph of f(x) shifts 4 units left and 2 units down. So, a=4 and b=-2.
[tex]g(x)=f(x+4)+(-2)[/tex]
[tex]g(x)=(x+4)^3-2[/tex] [tex][\because f(x)=x^3][/tex]
[tex]y=(x+4)^3-2[/tex]
Therefore option B is correct.
Transformation involves changing the form of a function.
The equation that translates f(x) 4 units left and 2 units down is [tex]y = (x + 4)^3 - 2[/tex]
The function is given as:
[tex]f(x) = x^3[/tex]
Translate left by 4 units.
So, we have:
[tex]f(x + 4) = (x + 4)^3[/tex]
Translate down by 2 units.
So, we have:
[tex]f(x + 4) - 2 = (x + 4)^3 - 2[/tex]
Rewrite as:
[tex]y = (x + 4)^3 - 2[/tex]
Hence, the equation that translates f(x) 4 units left and 2 units down is [tex]y = (x + 4)^3 - 2[/tex]
Read more about function transformation at:
https://brainly.com/question/1548871