Identify the volume and surface area of a sphere with great circle area 225π ft2 in terms of π.
A: V = 4500π ft3; S = 900π ft2
B: V = 900π ft3; S = 300π ft2
C: V = 900π ft3; S = 4500π ft2
D: V = 300π ft3; S = 900π ft2

Respuesta :

Hagrid
Given:

A circle with an area of 225π square feet.

We need to determine the volume and surface area of a sphere derived from this circle.

A = 
πr^2

solve for r:

225
π = πr^2
225 = r^2
r = 15 feet

Volume of a sphere:

V = 4/3 
π r^3
V = 4/3 
π (15)^3
V = 4500
π cubic feet

The surface area of a sphere:

SA = 4
πr^2
SA = 4
π * (15^2)
SA = 900
π square feet. 

Therefore the answer of this problem is letter A:

A) 
A: V = 4500π ft3; S = 900π ft2