Answer:
(2) - [tex]\vec v= < 15.5885, -9 >[/tex]
(3) - [tex]\vec u= < -59.9371, 148.349 >[/tex]
Step-by-step explanation:
Problem #2:
Given the vector in magnitude-angle form, find it in component form.
Call the vector, vector "v."
[tex]||\vec v||= 18 \ at \ -30 \textdegree\\\\\rightarrow \boxed{\vec v= < ||\vec v||\cos\theta,||\vec v||\sin\theta > }\\\\\Longrightarrow \vec v= < (18)\cos( -30 \textdegree),(18)\sin( -30 \textdegree) > \\\\\therefore \boxed{\boxed{ \vec v= < 15.5885, -9 > }}[/tex]
Problem #3:
Given the vector in magnitude-angle form, find it in component form.
Call the vector, vector "u."
[tex]||\vec u||= 160 \ at \ 112 \textdegree\\\\\rightarrow \boxed{\vec u= < ||\vec u||\cos\theta,||\vec u||\sin\theta > }\\\\\Longrightarrow \vec u= < (160)\cos( 112 \textdegree),(160)\sin( 112 \textdegree) > \\\\\therefore \boxed{\boxed{ \vec u= < -59.9371, 148.349 > }}[/tex]