A capacitor has charge 30nC and capacitance equal to 10nF (remember nano is 10^(-9)). What is the energy stored in this capacitor? Enter your answer in nJ (so, if your answer was "1.OnJ", you'd enter "1.0").

Respuesta :

Answer:

[tex]U=450 \ nJ[/tex]

Explanation:

[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Formula's used to find the Energy Stored in a Capacitor:}}\\\\\ U=\frac{1}{2}Q \Delta V= \frac{1}{2}C\Delta V^2=\frac{Q^2}{2C} \end{array}\right }[/tex]

Given:

[tex]Q=30 \ nC \rightarrow 30 \times 10 ^{-8} \ C\\\\C= 10 \ nF \rightarrow 10 \times10^{-8} \ F[/tex]

Find:

[tex]U=?? \ J[/tex]

[tex]U=\frac{Q^2}{2C}\\\\\Longrightarrow U= \frac{(30 \times 10 ^{-8})^2}{2(10 \times10^{-8})}\\\\ \Longrightarrow U=4.5 \times10^{-7} \ J\\\\\therefore \boxed{\boxed{U=450 \ nJ}}[/tex]

Thus, the energy stored in the capacitor is found.