Respuesta :
Answer: the correct option is (B) [tex]728x^2y^3.[/tex]
Step-by-step explanation: We are given to select the correct L.C.M. of the following expressions :
[tex]91x^2y~~~~~~\textup{and}~~~~~104xy^3.[/tex]
We know that
L.C.M. stands for the least common multiple.
Now, the prime factorization of the given expressions are as follows :
[tex]91x^2y=7\times13\times x \times x \times y,\\\\104xy^3=2\times 2\times2\times 13\times x \times y\times y\times y.[/tex]
Therefore, the required L.C.M will be
[tex]L.C.M.=2\times2\times2\times7\times13\times x\times x\times y\times y\times y=728x^2y^3.[/tex]
Thus, the L.C.M. of he given expressions is [tex]728x^2y^3.[/tex]
Option (B) is CORRECT.