Respuesta :

Answer:

To solve the given quadratic equation solve using completing the perfect square

The two zeros of quadratic equation [tex]x^2-8x=242[/tex] are [tex]x=\sqrt{258}+4,\:x=-\sqrt{258}+4[/tex]

Step-by-step explanation:

Given quadratic equation [tex]x^2-8x=242[/tex]

We have to choose the most appropriate strategy to solve the given quadratic equation [tex]x^2-8x=242[/tex].

The given quadratic equation [tex]x^2-8x=242[/tex]

Solve using completing the perfect square, [tex]\mathrm{Write\:equation\:in\:the\:form:\:\:}x^2+2ax+a^2=\left(x+a\right)^2[/tex]

Solve for a ,

[tex]2ax=-8x[/tex] , we get a = -4

[tex]\mathrm{Add\:}a^2=\left(-4\right)^2\mathrm{\:to\:both\:sides}[/tex]

[tex]x^2-8x+\left(-4\right)^2=242+\left(-4\right)^2[/tex]

left side becomes a perfect square, we get,

[tex]\left(x-4\right)^2=258[/tex]

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

[tex]x-4=\pm\sqrt{258}\\\\\mathrm{Solve\:}\:x-4=\sqrt{258}:\quad x=\sqrt{258}+4[/tex]

[tex]\mathrm{Solve\:}\:x-4=-\sqrt{258}:\quad x=-\sqrt{258}+4[/tex]

Thus, the two zeros of quadratic equation [tex]x^2-8x=242[/tex] are [tex]x=\sqrt{258}+4,\:x=-\sqrt{258}+4[/tex]

Answer:

The most appropriate strategy to solve x2−8x=242 is quadratic formula.

Step-by-step explanation:

The equation is

[tex]x^2-8x=242[/tex]

Subtract 242 from both the sides.

[tex]x^2-8x-242=0[/tex]

Use quadratic formula to solve the given equation.

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{8\pm \sqrt{(-8)^2-4(1)(-242)}}{2(1)}[/tex]

[tex]x=\frac{8\pm \sqrt{1032}}{2}[/tex]

[tex]x=\frac{8\pm 2\sqrt{258}}{2}[/tex]

[tex]x=\frac{2(4\pm \sqrt{258})}{2}[/tex]

[tex]x=4\pm \sqrt{258}[/tex]

Therefore the most appropriate strategy to solve x2−8x=242 is quadratic formula.