Respuesta :

[tex] f^{-1} (x)= \frac{1}{x-1} [/tex]

Hope this helps!!

Answer:  The required inverse function is given by

[tex]f^{-1}(x)=\dfrac{1}{x-1}.[/tex]

Step-by-step explanation:  We are given to find the inverse function of the following function :

[tex]f(x)=\dfrac{x+1}{x}~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

Let us consider that

f(x) = y, which gives that

[tex]x=f^{-1}(y).[/tex]

From equation (i), we have

[tex]f(x)=\dfrac{x+1}{x}\\\\\\\Rightarrow y=\dfrac{f^{-1}(y)+1}{f^{-1}(y)}\\\\\\\Rightarrow yf^{-1}(y)=f^{-1}(y)+1\\\\\Rightarrow yf^{-1}(y)-f^{-1}(y)=1\\\\\Rightarrow (y-1)f^{-1}(y)=1\\\\\Rightarrow f^{-1}(y)=\dfrac{1}{y-1}.[/tex]

Thus, the required inverse function is given by

[tex]f^{-1}(x)=\dfrac{1}{x-1}.[/tex]