Respuesta :

bcalle
x ^(1/4) * x^(5/8)
The rule is keep the base and add the powers.
Change 1/4 to a denominator of 8. 1/4 = 2/8
x ^(2/8 + 5/8)
x^ (7/8)

Answer:

[tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}=x^{\frac{7}{8}}[/tex]    

Step-by-step explanation:

Given : Expression  x to the 1 fourth power times x to the 5 eighths power.

To find : Multiply the expression?

Solution :

Step 1 - Write the expression,

x to the 1 fourth power - [tex]x^{\frac{1}{4}}[/tex]

x to the 5 eighths power - [tex]x^{\frac{5}{8}}[/tex]

Expression - [tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}[/tex]

Step 2 - In multiply if bases are same power get added,

[tex]=x^{\frac{1}{4}+\frac{5}{8}}[/tex]

Step 3 - Solve,

[tex]=x^{\frac{2+5}{8}}[/tex]

[tex]=x^{\frac{7}{8}}[/tex]

Therefore,  [tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}=x^{\frac{7}{8}}[/tex]