Respuesta :
x ^(1/4) * x^(5/8)
The rule is keep the base and add the powers.
Change 1/4 to a denominator of 8. 1/4 = 2/8
x ^(2/8 + 5/8)
x^ (7/8)
The rule is keep the base and add the powers.
Change 1/4 to a denominator of 8. 1/4 = 2/8
x ^(2/8 + 5/8)
x^ (7/8)
Answer:
[tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}=x^{\frac{7}{8}}[/tex]
Step-by-step explanation:
Given : Expression x to the 1 fourth power times x to the 5 eighths power.
To find : Multiply the expression?
Solution :
Step 1 - Write the expression,
x to the 1 fourth power - [tex]x^{\frac{1}{4}}[/tex]
x to the 5 eighths power - [tex]x^{\frac{5}{8}}[/tex]
Expression - [tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}[/tex]
Step 2 - In multiply if bases are same power get added,
[tex]=x^{\frac{1}{4}+\frac{5}{8}}[/tex]
Step 3 - Solve,
[tex]=x^{\frac{2+5}{8}}[/tex]
[tex]=x^{\frac{7}{8}}[/tex]
Therefore, [tex]x^{\frac{1}{4}}\times x^{\frac{5}{8}}=x^{\frac{7}{8}}[/tex]