An equal number of moles of I2(g) and Br2(g) are placed into a closed container and allowed to establish the following equilibrium:

I2(g) + Br2(g) 2IBr(g)

Keq = 280

Which one of the following relates [IBr] to [I2] at equilibrium?




[I2] = [IBr]




[I2] < [IBr]




[I2] = 2 [IBr]




[I2] = 280 [IBr]

Respuesta :

B. I'm in the same class

Answer : The correct option is, [tex][I_2]<[IBr][/tex]

Solution : Given,

Moles of [tex]I_2[/tex] = Moles of [tex]Br_2[/tex]

[tex]K_{eq}=280[/tex]

The balanced equilibrium reaction is,

[tex]I_2(g)+Br_2(g)\rightleftharpoons 2IBr(g)[/tex]

The expression for equilibrium constant is,

[tex]K_{eq}=\frac{[IBr]^2}{[I_2][Br_2]}[/tex]

As per question, Moles of [tex]I_2[/tex] = Moles of [tex]Br_2[/tex]

Now put all the given values in above formula, we get the relation between the [tex][IBr][/tex] and [tex][I_2][/tex].

[tex]280=\frac{[IBr]^2}{[I_2][I_2]}[/tex]

[tex]280=\frac{[IBr]^2}{[I_2]^2}[/tex]

[tex]\sqrt{280}=\frac{[IBr]}{[I_2]}[/tex]

[tex][IBr]=16.733\times [I_2][/tex]

From this we conclude that the concentration of [tex]IBr[/tex] is greater than the concentration of [tex]I_2[/tex].

Therefore, the correct option is, [tex][I_2]<[IBr][/tex]