Use the parabola tool to graph the quadratic function f(x)=x2−12x+27. Graph the parabola by first plotting its vertex and then plotting a second point on the parabola.

Respuesta :

Answer:

vertex is (6 , -9)

points are (9,0) and (3,0)

Step-by-step explanation:

Given quadratic function [tex]f(x)=x^2-12x+27[/tex]

We have to plot the given quadratic function.

Consider the Given quadratic function [tex]f(x)=x^2-12x+27[/tex]

The general form of quadratic function  is given [tex]f(x)=a(x-h)^2+k[/tex]

Where, (h, k)  is vertex , given  [tex]h =\frac{-b}{2a}[/tex] and [tex]k = f(h)[/tex]  

Thus, for given quadratic function [tex]f(x)=x^2-12x+27[/tex]

a = 1 , b= -12 , c = 27

Thus,

[tex]h =\frac{-b}{2a}=\frac{12}{2}=6[/tex]

[tex]k = f(h)[/tex] that is f(12) = (6)^2 - 12× 6 +27 = 36 - 72 + 27 = - 9

Thus, given  quadratic function [tex]f(x)=x^2-12x+27[/tex] in standard form is [tex]f(x)=(x-6)^2-9[/tex]  

Thus, vertex is (6 , -9)

For second point put [tex]f(x)=0[/tex]  , we get,

[tex]f(x)=(x-6)^2-9=0[/tex]  

[tex]\Rightarrow (x-6)^2-9=0[/tex]  

[tex]\Rightarrow (x-6)^2=9[/tex]  

[tex]\Rightarrow (x-6)=\pm 3[/tex]  

[tex]\Rightarrow x= 6\pm 3[/tex]  

Thus, [tex]\Rightarrow x=6+3=9[/tex] and [tex]\Rightarrow x=6-3=3[/tex]  

thus, points are (9,0) and (3,0)

Graph is attached below.

Ver imagen athleticregina