Respuesta :

For this case we have the following equation:

[tex] (x - 5) ^ 2 + 3 (x - 5) + 9 = 0
[/tex]

We make the following change of variables:

[tex] u = x-5
[/tex]

We have then:

[tex] u ^ 2 + 3u + 9 = 0
[/tex]

Then, using the quadratic formula we have:

[tex] u = \frac{-3 +/- \sqrt{3^2 - 4(1)(9)}}{2(1)}

[/tex]

[tex] u = \frac{-3 +/- \sqrt{9 - 36}}{2} [/tex]

[tex] u = \frac{-3 +/- \sqrt{-27}}{2} [/tex]

[tex] u = \frac{-3 +/- i 3\sqrt{3}}{2} [/tex]

Solution 1:

[tex] u = \frac{-3 + i3\sqrt{3}}{2} [/tex]

Solution 2:

[tex] u = \frac{-3 - i3\sqrt{3}}{2} [/tex]

Finally, returning the change we have:

Solution 1:

[tex]x1=u1+5=\frac{-3+i3\sqrt{3}}{2}+5[/tex]

[tex] x1 = \frac{1}{2}(7+i3\sqrt{3}) [/tex]

Solution 2:

[tex]x2=u2+5=\frac{-3-i3\sqrt{3}}{2}+5[/tex]

[tex]x2 = \frac{1}{2}(7-i3\sqrt{3})[/tex]

The value of x are as follows;

1 /2 (7 +3i√3 / 2 )

1 / 2 (7 - 3i√3 / 2 )

Using substitution method,

Substitution

Substitution simply means to put in place of another. Therefore, let's replace u in the equation.

u = (x - 5)

(x – 5)² + 3(x – 5) + 9 = 0

u² + 3u + 9 = 0

Quadratic formula

-b ±√b² - 4ac / 2a

where

a  = 1

b = 3

c = 9

Therefore,

-3 ± √3² - 4(1)(9) / 2(1)

-3 ± √9 - 36 / 2

-3 ± √-27 / 2

Therefore,

u = -3 + 3i√3 / 2

or

u = -3 - 3i√3 / 2

Finally,

x = u + 5

x = -3 + 3i√3 / 2 + 5 = 1 /2 (7 +3i√3 / 2 )

or

x = -3 - 3i√3 / 2 + 5 = 1 / 2 (7 - 3i√3 / 2 )

learn more on substitution and quadratic formula here: https://brainly.com/question/11540485