Respuesta :

I hope this helps you



2x²(6x³+3x+4)

Answer:

Option D is correct

factor completely of [tex]12x^5+6x^3+8x^2[/tex] is[tex]2x^2(6x^3+3x+4)[/tex]

Step-by-step explanation:

GCF(Greatest Common Factor) states that the largest factor that divides the polynomial.

Given the expression:

[tex]12x^5+6x^3+8x^2[/tex]

By definition of GCF we have;

Factor a GCF of the given expression.

Since GCF of [tex]12x^5[/tex], [tex]6x^3[/tex] and [tex]8x^2[/tex]  is [tex]2x^2[/tex]

then;

[tex]2x^2(6x^3+3x+4)[/tex]

Therefore, factor completely of [tex]12x^5+6x^3+8x^2[/tex] is[tex]2x^2(6x^3+3x+4)[/tex]