Respuesta :

Bytjie

Answer:

x = 8

Step-by-step explanation:

x = double y

when x = 4 , y = 2

meaning...

when y = 4 , x = 8

Answer:

x = 2√2

Step-by-step explanation:

If is inversely proportional to x², then:

[tex]y \propto \dfrac{1}{x^2} \implies y=\dfrac{k}{x^2} \quad \textsf{(for some constant k)}[/tex]

Given:

  • x = 4 when y = 2

Substitute the given values into the found equation and solve for k:

[tex]\implies 2=\dfrac{k}{4^2}[/tex]

[tex]\implies 2=\dfrac{k}{16}[/tex]

[tex]\implies k=32[/tex]

Therefore:

[tex]y=\dfrac{32}{x^2}[/tex]

To find the value of x when y = 4, substitute y = 4 into the found equation and solve for x:

[tex]\implies 4=\dfrac{32}{x^2}[/tex]

[tex]\implies x^2=\dfrac{32}{4}[/tex]

[tex]\implies x^2=8[/tex]

[tex]\implies x=\sqrt{8}[/tex]

[tex]\implies x=\sqrt{4 \cdot 2}[/tex]

[tex]\implies x=\sqrt{4} \sqrt{2}[/tex]

[tex]\implies x=2\sqrt{2}[/tex]