Respuesta :

Answer:

4 0.9375

5 0.46875

b. The type of sequence is geometric.

c. t(n) = 7.5 * (1/2)^(n-1)

Step-by-step explanation:

Answer:

a)  See below.

b)  Geometric sequence

[tex]\textsf{c)} \quad a_n=7.5(0.5)^{n-1}[/tex]

Step-by-step explanation:

Part (a)

From inspection of the given table, t(n) halves each time n increases by 1.

Therefore:

[tex]\implies a_4=1.875 \div 2 = 0.9375[/tex]

[tex]\implies a_5=0.9375 \div 2 =0.46875[/tex]

Completed table:

[tex]\begin{array}{|c|c|}\cline{1-2} \vphantom{\dfrac12} n&t(n) \\\cline{1-2} \vphantom{\dfrac12} 1& 7.5\\\cline{1-2} \vphantom{\dfrac12} 2& 3.75\\\cline{1-2} \vphantom{\dfrac12} 3&1.875 \\\cline{1-2} \vphantom{\dfrac12} 4& 0.9375\\\cline{1-2} \vphantom{\dfrac12} 5& 0.46875\\\cline{1-2} \end{array}[/tex]

Part (b)

As the given sequence has a constant ratio of 0.5, it is a geometric sequence.

Part (c)

[tex]\boxed{\begin{minipage}{5.5 cm}\underline{Geometric sequence}\\\\$a_n=ar^{n-1}$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\\phantom{ww}$\bullet$ $r$ is the common ratio.\\\phantom{ww}$\bullet$ $a_n$ is the $n$th term.\\\phantom{ww}$\bullet$ $n$ is the position of the term.\\\end{minipage}}[/tex]

The first term of the sequence is 7.5.  Therefore,:

  • a = 7.5

The common ratio is 0.5. Therefore:

  • r = 0.5

Therefore, to write an equation for the given geometric sequence, substitute the found values of a and r into the formula:

  • [tex]a_n=7.5(0.5)^{n-1}[/tex]