Respuesta :

Answer:

BC = 143

JC = 10

Step-by-step explanation:

Similar triangles:

      In similar triangles, the corresponding sides are in same ratio.

   ΔABC ~ ΔAGH

         [tex]\sf \dfrac{BC}{GH} = \dfrac{AB}{AG}\\\\\\\dfrac{BC}{22}=\dfrac{130}{20}\\\\[/tex]

            [tex]\sf BC =\dfrac{130}{20}*22[/tex]

                   = 13 * 11

            [tex]\sf \boxed{BC = 143}[/tex]

11) ΔJLK ~ ΔJBC

          [tex]\sf \dfrac{JC}{JK} = \dfrac{JB}{JL}\\\\\\\dfrac{JC}{40}=\dfrac{12}{48}\\\\JC = \dfrac{12}{48}*40\\\\JC = \dfrac{1}{4}*40\\\\JC = 1*10\\\\\boxed{\bf JC = 10}[/tex]