Answer:
[tex]y=3cos(\frac{1}{2} (x+}225)+4[/tex] phase shift in degrees
[tex]y=3cos(\frac{1}{2} (x+\frac{5\pi }{4}))+4[/tex] phase shift in pi radians
Step-by-step explanation:
Here is the equation for the graph of the cosine function.
y = A sin(B(x + C)) + D
A = amplitude
period is 2π/B
C = phase shift
D = vertical shift
Lets convert 1800° to Pi radians.
[tex]1800*\frac{\pi }{180}[/tex]
[tex]180(10)*\frac{\pi }{180}[/tex]
[tex]10*\frac{\pi }{180}[/tex]
[tex]10\pi[/tex] radians
A = 3
B=2π/ 10π simplifies to [tex]\frac{1}{2}[/tex]
C = phase shift
D = 4
[tex]y=3cos(\frac{1}{2} (x+}225)+4[/tex] phase shift in degrees
[tex]y=3cos(\frac{1}{2} (x+\frac{5\pi }{4}))+4[/tex] phase shift in pi radians