2. Determine an equation for a cosine function that has a period of 1800°, an amplitude of 3, a
vertical shaft of 4, and a phase shift of 225° right.

Respuesta :

Answer:

[tex]y=3cos(\frac{1}{2} (x+}225)+4[/tex]   phase shift in degrees

[tex]y=3cos(\frac{1}{2} (x+\frac{5\pi }{4}))+4[/tex]   phase shift in pi radians

Step-by-step explanation:

Here is the equation for the graph of the cosine function.

y = A sin(B(x + C)) + D

A = amplitude

period is 2π/B

C = phase shift

D = vertical shift

Lets convert 1800° to Pi radians.

[tex]1800*\frac{\pi }{180}[/tex]

[tex]180(10)*\frac{\pi }{180}[/tex]

[tex]10*\frac{\pi }{180}[/tex]

[tex]10\pi[/tex] radians

A = 3

B=2π/ 10π  simplifies to [tex]\frac{1}{2}[/tex]

C = phase shift

D = 4

[tex]y=3cos(\frac{1}{2} (x+}225)+4[/tex]   phase shift in degrees

[tex]y=3cos(\frac{1}{2} (x+\frac{5\pi }{4}))+4[/tex]   phase shift in pi radians