in problems 36 through 38, apply the convolution theorem to derive the indicated solution x(t)x(t) of the given differential equation with initial conditions x(0)

Respuesta :

1/2 ∫₀t f( t - T ) sin ( 2T )  dT is the given differential equation with initial conditions x(0).

What does Laplace transform mean?

The Laplace transform transforms a given derivative function with a real variable t into a complex function with a variable s.

                    Let f(t) be given for t 0 and presume that it complies with a number of later-explained requirements.

Take the Laplace transform , we get

     s² X(s) - sx(0) - x'(0) + 4X (s ) = F(s)

      (s² + 4 ) X(s ) = F(s)

          X(s) =  F(s)/s² + 4

          x(t) = L⁻¹ { F(s)/s² + 4 }

                = 1/2 L⁻¹ { F(s) 2/s² + 4 }

                   = 1/2 [ f(t) * sin (2t) ]

                   = 1/2 ∫₀t f( t - T ) sin ( 2T )  dT

Learn more about Laplace transform

brainly.com/question/14487937

#SPJ4